نقل مکان به آدرس جدید




 

با سلام  به دوستان و  همراهان گرامی تشکر می کنم به خاطراینکه در  مدت چند سالی که این وبلاگ راه اندازی شده ما را یاری نموده و با نکته نظر ها و پیشنهادات و انتقادات سازنده راهنمایی و یاری نموده اند 

از این پس به آدرس زیر مراجعه فرمایید


www.Archigroup.ir

با تشكر

             سعيد اساسي

مهندس برجسته ایرانی، عالی‌ترین جایزه افتخار در زمینه بلندمرتبه ‌سازی را دریافت کرد .

مهندس برجسته ایرانی، عالی‌ترین جایزه افتخار در زمینه بلندمرتبه ‌سازی را دریافت کرد .

 متن مصاحبه ی دکتر "فرزاد نعیم" با خبرنگار "رادیو فردا"...

فرزاد نعیم، جایزه فضلور خان را برای طرح ساختمان های بلند مقاوم در مقابل زلزله دریافت می کند

فاطمه امان

دکتر فرزاد نعيم کارشناس جهانی سازه های بلند و مقاوم در مقابل زمين لرزه، برنده مدال فضلور خان (فضل الرحمن خان) که بالاترين جايزه افتخار در رشته مهندسی ساختمان به شمار می آيد شده است.

فرزاد نعيم، معاون شرکت بزرگ مهندسی جان مارتين در کاليفرنيا است.

فضلور خان ( فضل الرحمن خان) متولد بنگلادش، برجسته ترين مهندس محاسبه در قرن بيستم است. سيستم هايی که از طريق او ايجاد شد در طول دهه ۱۹۶۰ ميلادی، طرح فنی ساختمان های بلند يا آسمان خراش ها را دگرگون کرد.

از طريق نوآوری های او در سيستم و تئوری های او بود که اجرای طرح ساختمان های بلند و بالاتر از ۸۰ يا ۹۰ يا ۱۰۰ طبقه به طور کامل عملی شد. بزرگترين ساختمان ها در آمريکا، از جمله دو برج دو قلوی تجارت جهانی که در جريان حمله های تروريستی يازدهم سپتامبر نابود شدند و برج بلند ۱۱۰ طبقه ای سيرز در شيکاگو، يا توسط او و يا شاگردان او طرح شده اند.

فضلور خان را انشتين مهندسی ساختاری می نامند

خان در دهه ۱۹۸۰ در سن ۵۵ سالگی درگذشت. به پاس خدمات و جايگاه ويژه او در جامعه مهندسی معاصر و برای بزرگداشت او، موسسه بين المللی و غير انتفاعی «شورای بين المللی طرح سازه های بلند»، هر سال به يک شخصيت فنی برجسته، مدال فضلور خان را اهدا می کند.

دو نفر قبلی برنده اين مدال، لسلی رابرتسون، محاسب دو برج دوقلوی تجارت جهانی و هال اينگار، محاسب برج سيرز شيکاگو و از شاگردان فضلور خان هستند.آقای نعيم به خاطر اين موفقيت به شما تبريک می گوييم. کارهای شما از محدوده آمريکا فراتر می رود و بيشتر جنبه جهانی دارد. لطفا توضيح دهيد که اين مدال را به طور مشخص برای چه کاری دريافت کرده ايد.

بنده مفتخر هستم و اميدوارم که شايستگی گام برداشتن در راه بزرگان را داشته باشم. اين مدال به طور مشخص به کسی داده می شود که دستاورد مهمی برای سازه های بلند در مناطق مختلف به بار آورده باشد. من در زمینه مقاومت ساختمان های بلند در مقابل زمین لرزه، فعالیت های زیادی داشته ام و از من مقاله های بسیاری در این رابطه چاپ شده است. این مدال را احتمالا در این رابطه به من می دهند.طرح های شما بيشتر در کجا قرار دارند و جایزه را به طور مشخص چه وقت دریافت می کنید؟

بيشتر کارهای من در خصوص سازه های بلند، در آمريکا است از جمله سه تا چهار ساختمان بلند در شهر لس آنجلس و چند ساختمان در چين و جاهای ديگر.

قرار است در ماه اکتبر (در حدود دو ماه ديگر)، اين جايزه را دريافت کنم. فعلا خوشحال هستم که اين جايزه را دريافت می کنم، اما دليل آن را بعدا می پرسم!

شما کارشناس جهانی زلزله هستيد و به طور معمول پس از هر زمين لرزه بزرگی از جمله زلزله بم در محل حضور پيدا می کنيد. در پرو هم بارها حضور داشته ايد. مایلم پرسشی را در رابطه با زلزله اخير پرو مطرح کنم. با توجه به اين که پيامدهای زمين لرزه های نقاط مختلف دنيا را مشاهده کرده ايد، چگونه است که سطح خرابی های به بار آمده از زلزله ای با قدرت ۸ درجه در مقياس ريشتر در پرو، به مراتب کمتر از زلزله ۶.۷ بم در ايران است؟ زمين لرزه پرو در حدود ۵۰۰ کشته بر جا گذاشته در حالی که تلفات انسانی زلزله بم که شدت آن هم کمتر بود، بسيار بيش از اين بود. اصولا چه عواملی در اين زمينه نقش دارند؟

خوب عوامل مشخصی نقش دارند. يکی اين که اين زلزله اخير پرو که بسيار شديد بود، بر خلاف زلزله بم، درست در مناطق مسکونی اتفاق نيفتاده است. اين زلزله در حدود ۱۰۰ کيلومتری شهر ايکا و ۱۵۰ کيلومتری ليما پايتخت اتفاق افتاد. البته بايد گفت که حتی در اين فاصله هم زلزله به شدت ۸ درجه ريشتر تکان های شديدی ايجاد می کند.

هر دانشجوی مهندسی در پرو، تا قبل از فارغ التحصيلی، بايد پروژه ای در رابطه با ساختن يک سازه خشت و گلی و مقاوم کردن آن در مقابل زلزله ارايه دهد

در بم زلزله ۶.۷، درست وسط شهر اتفاق افتاد. در نتيجه شدتی که شهر بم آسيب ديد، بسيار زياد بود.

بنابراين بايد توجه کرد که مساله فقط درجه ريشتر زلزله نيست، فاصله هم فوق العاده مهم است زيرا هر چه دورتر از مرکز زلزله قرار داشته باشيد، دامنه آسيب ها هم کمتر خواهد بود.

عامل ديگر اين است که ما هنوز از ميزان تلفات زلزله پرو به طور دقيق آگاه نيستيم. ممکن است آمار پايين تلفات، فقط به اين دليل باشد که مناطق نزديک به مرکز اين زلزله، الزاما مراکز تراکم جمعيت نبوده است.

يعنی به خوبی ممکن است خرابی زياد باشد، اما تلفات انسانی آن زياد نبوده است. اتفاقا من بلافاصله پس از زلزله، با همکارانم در پرو صحبت کردم. آنها گفتند که ميزان خرابی ساختمان های خشتی و گلی زياد بوده ولی خوشبختانه تلفات انسانی به نظر نمی رسد که زياد بوده است.پرو هم کشور زلزله خيزی است. آيا فکر می کنيد اين کشور از زلزله های گذشته درس گرفته است؟

بله درست است. در پرو الان سال ها است در دانشگاه ها به طور فعال در راستای يافتن راه حلی برای مشکل ساختمان های خشتی و گلی تلاش می شود. هر دانشجوی مهندسی در پرو، تا قبل از فارغ التحصيلی، بايد پروژه ای در رابطه با ساختن يک سازه خشت و گلی و مقاوم کردن آن در مقابل زلزله ارايه دهد. در پرو به مساله درست کردن سازه های مناطق روستايی اهميت زيادی داده می شود.

البته هنوز مشخص نيست که آيا پايين بودن سطح تلفات انسانی الزاما با اين موضوع ارتباط دارد. يعنی مشخص نيست که آيا واقعا می توان در عرض ۱۰ يا ۱۵ سال کاری کرد که بتوان تلفات انسانی را از ۴۰ هزار نفر به ۸۰۰ نفر رساند، ولی به طور قطع اگر در پرو به همين روال کنونی به بازسازی مناطق مسکونی روستايی و آموزش همين سيستم دانشگاهی ادامه داده شود، آنگاه مسئله زلزله به مراتب ساده تر از حد کنونی نيز خواهد بود.

به نظر من، کاری که در اين رابطه در پرو انجام می شود، يک نمونه خوب جهانی است. آيا اين کار، کار پيچيده ای است؟ اگر پیچیده نیست، چرا در ايران انجام نمی شود؟

به هيچ وجه پيچيده نيست. اتفاقا بسيار ساده است، فقط همت و پشتکار و همکاری مردم و دولت می خواهد.خوب آيا به نظر شما در اين زمينه کوتاهی می شود؟ چون اگر اين کار به اين سادگی است، چرا در ايران انجام نمی شود به طوری که هر بار باز شاهد خسارت های گسترده ناشی از زلزله هستيم؟

خوب فکر نمی کنم که مساله کوتاهی کردن باشد. به نظر من مساله بيشتر فرهنگی است. ما ايرانی ها، چه در ايران و چه در خارج از ايران، فکر می کنيم اگر به مسايل بزرگ و پيچيده توجه کنيم، مسايل کوچک و پيش پا افتاده از بين می روند. البته اين نظر شخصی من است و هيچ تئوری علمی پشت آن نيست.

به خاطر دارم در حدود ۵ يا ۶ سال پيش در ايران در دوره های آموزشی درس می دادم. بیشتر سوال هايی که دانشجويان مطرح می کردند، مربوط به مسايل محاسباتی پيچيده ای بود که شايد در آمريکا در مورد ۵ درصد ساختمان ها اجرا می شد. من از خودم می پرسيدم چرا توجه به مساله ساختمان های خشتی برای دانشجو يا استاد ايرانی به گونه ای است که انگار افت دارد.

ما در ايران مشکلی به نام مشکل زلزله داريم. هر چه کمتر به اين مشکل توجه کنيم، در آينده بيشتر آسيب خواهيم ديد

به نظر من ما بايد با اين مساله برخورد کنيم. به خاطر دارم دو يا سه سال قبل از زلزله بم با استاد دانشگاهی در ايران در همين رابطه صحبتی داشتم. من می گفتم که بايد همانطور که کشورهای بسياری از جمله پرو، به معرفی مدل های ساختمان های خود پرداخته اند، به معرفی اين مدل ها در خارج از ايران دست بزنيم تا برای رفع اشکال های احتمالی آن راه حلی پيدا شود. اما اين استاد دانشگاه اين نکته که خارجی ها در جريان مشکلاتمان قرار گيرند را ناخوشايند می ديد. مساله اينجا است که وقتی زلزله ای نظير زلزله بم اتفاق می افتد، مشکلاتی از اين دست به خودی خود مطرح خواهند شد و همه در جريان کاستی ها قرار خواهند گرفت.

دانشجو يا استاد ايرانی که به سراغ حل يک مساله محلی می رود را بايد بيشتر مورد تشويق قرار داد تا آنکه به سراغ ساختمان ۱۲۰ طبقه در محله ای در نيويورک يا شيکاگو می رود.

پرسش ديگرم در رابطه با زمين لرزه اخير ژاپن است که باعث آسيب وارد شدن به نيروگاه هسته ای کاشی وازاکی شد به نحوی که مقداری مواد راديو اکتيو به خارج نشت کرد. آژانس بين المللی انرژی اتمی، پس از بازرسی های اخير از اين نيروگاه نتيجه گرفت که در زمانی که اين نيروگاه طرح شده، مساله مقاومت در مقابل زمين لرزه ای با اين شدت در ساختار آن در نظر گرفته نشده است. از نظر شما تاثير اين مساله در طرح نيروگاه های آينده تا چه حد خواهد بود؟ درس اين زلزله برای کشورهای بسياری که در تلاش ساخت نيروگاه های هسته ای هستند از جمله ايران چيست؟

به نظر من بله درسی برای همه وجود دارد. البته من فقط می توانم از زاويه مهندسی زلزله که به آن آگاه هستم، به قضيه نگاه کنيم.

مهندسی زلزله علم نسبتا جوانی است که از عمر آن تنها ۴۰ يا ۵۰ سال می گذرد. در نتيجه هنوز پرسش های بی پاسخ در مقابل آن زياد است. هر ۵-۶ سالی بر ميزان دانش ما در زمينه زلزله افزوده می شود. به عنوان مثال نيروگاه هسته ای که در سال ۱۹۶۰ طرح می شد، در سال ۱۹۷۰ به گونه متفاوتی طراحی می شد. اکنون طرح يک نيروگاه هسته ای، به طور قطع با طرح آن در گذشته متفاوت خواهد بود.

از جمله مسايل قابل حل، مساله لوله های گاز در تهران است. لوله های گاز در تهران اشکال دارند و نشت می کنند. اگر زلزله رخ دهد، اين لوله های گاز پر اشکال، می توانند باعث آتش سوزی های فجيع شوند

با توجه به خطرهای آسيب وارد شدن به يک نيروگاه اتمی، به نظر من نبايد در مناطق فوق العاده زلزله خيز اين نيروگاه ها را بنا کرد. به عنوان مثال معقول نيست که در نزديکی گسل های جنوب کاليفرنيا نيروگاه هسته ای ساخته شود. بنابراين، طرح، اجرا کاربرد و اداره نيروگاه اتمی، توجه ويژه ای می طلبد.درباره اثرهای يک زلزله احتمالی در تهران صحبت زياد شده است. شما بارها گفته ايد که مهمترين مساله برای شهری مثل تهران، با آن جمعيت و ساختار مهندسی و شهرسازی آن، شايد در اين لحظه بايد راه های کنار آمدن با پيامدهای زمين لرزه احتمالی باشد.
آيا از نظر شما در شهر پر جمعيتی مانند تهران، اصولا آمادگی مقابله با پيامدهای يک زمين لرزه احتمالی وجود دارد؟

من فکر می کنم در شهر تهران اين قابليت الان وجود ندارد. البته نه فقط تهران، شايد در لس آنجلس يا سانفرانسيسکو هم به آن شکل لازم وجود نداشته باشد. بايد واقع بين بود. بايد به گونه ای با مسايل برخورد کرد که بتوان آن ها را در مدت زمان معين و قابل توجيهی برای جلوگيری از صدمه گسترده به مردم حل کرد.

از نظر اقتصادی و علمی، امکان بازسازی تهران يا هر شهر بزرگ ديگر در عرض ۱۰ يا ۱۵ سال وجود ندارد. بنابراين مشکلاتی که در شهر تهران در رابطه با سازه ها و ساختمان های وجود دارد، تا مدت ها ماندگار خواهند بود.

اما با اين حال چند کار را می توان انجام داد: اول اينکه دست کم ساختمان های جديد با رويه درست ساخته شوند تا مثلا بيست سال ديگر مشکلات کنونی را نداشته باشيم.

دوم، بايد دست کم مسايل قابل حل را حل کرد. از جمله اين مسايل قابل حل، مساله لوله های گاز در تهران است. لوله های گاز در تهران اشکال دارند و نشت می کنند. اگر زلزله رخ دهد، اين لوله های گاز پر اشکال، می توانند باعث آتش سوزی های فجيع شوند.

مساله ديگر، با توجه به وضعيت ترافيک تهران و وسعت شهر، مساله کمبود ايستگاه آتش نشانی است.

سيستم های پاسخگويی به فاجعه، بايد قبل از واقعه ايجاد شود زيرا بعد اگر خدای نکرده زمين لرزه ای در تهران رخ دهد، فرصتی برای اينکه کسی بخواهد بنشيند و فکر کند که چطور بايد مردم را از زير آوار در آورد، يا چطور بايد آتش را خاموش کند، وجود ندارد.

بنابراين بايد بيش از بازسازی پس از زمين لرزه، به فکر برنامه ريزی پيش از آن بود.

پایان.

منبع : دانشجویان عمران بو علی

تاریخ آپلود ۱۸/۰۱/۱۳۸۹

شهرداری آلمان ، ساخت ساحل مصنوعی1

 ساحل مصنوعی
 
 
 ساحل مصنوعی
 
 
 ساحل مصنوعی
 
 ساحل مصنوعی
 
 ساحل مصنوعی
 
ساحل مصنوعی
 
 ساحل مصنوعی
 
 ساحل مصنوعی
 
 ساحل مصنوعی 

آپلود ۲۷/۱۰/۱۳۸۸

منبع :مرکز اطلاعات علمی تخصصی مدیریت شهری

 فصل چهارم: نظارت و كنترل ساختمان

 فصل چهارم: نظارت و كنترل ساختمان

 

 

 

 

 

 

ماده 33ـ مسئوليت نظارت عاليه بر اجراي ضوابط و مقررات ملي ساختمان در طراحي و اجراي تمامي ساختمانها و طرحهاي شهرسازي و شهركسازي و عمران شهري كه اجراي ضوابط و مقررات مزبور در مورد آنها الزامي است، بر عهده وزارت مسكن و شهرسازي است و وزارت مذكور با انتشار اعلاميه و اطلاعيه ها، آگاهيهاي لازم را به افراد جامعه خواهد داد.

 

ماده 34ـ شهرداريها موظفند در متن تأييديه نقشه هاي تفكيك زمين و متن پروانه هاي ساختماني و متن پاسخ به هرگونه استعلام درباره كاربري و تراكم اراضي، مشخصات مصوبات طرحهاي جامع، تفصيلي و هادي را كه شامل نام مرجع تصويب كننده، تاريخ تصويب و شماره و تاريخ ابلاغيه قانوني است ذكر نمايند.

 

ماده 35ـ مالكان و كارفرماياني كه اقدام به احداث ساختمان ميكنند موظفند از نخستين روز شروع عمليات اجرايي، يك نسخه از نقشه ساختمان ممهور شده به مهر شهرداري و يك نسخه از پروانه ساختمان را، در تمام مدت اجراي ساختمان در محل كارگاه نگهداري نمايند تا در صورت مراجعه مأموران كنترل ساختمان در اختيار آنها گذاشته شود.

 

ماده 36ـ كليه اشخاص حقيقي و حقوقي و سازمانها و دستگاههاي دولتي و غيردولتي ميتوانند در هر مورد كه با تخلف مواجه شده يا احتمال تخلف از ضوابط و مقررات شهرسازي و مقررات ملي ساختمان ميدهند، شكايت با اطلاعات خود را به وزارت مسكن و شهرسازي در تهران و سازمان مسكن و شهرسازي در استان ارسال يا تسليم نمايند.

 

ماده 37ـ وزارت مسكن و شهرسازي يا سازمان مسكن و شهرسازي استان، ساختمانها را راساً به صورت كنترل نمونه اي، سرزده و موردي يا پس از دريافت شكايت مورد رسيدگي و بازرسي قرار ميدهد، در صورت احراز تخلف از مقررات مذكور در مواد (34) و (35) قانون و مواد مندرج در اين فصل، با ذكر دلايل و مستندات، دستور اصلاح يا جلوگيري از ادامه كار را به شهرداريها و مراجع صدور پروانه ساختماني و مهندس مسئول نظارت ذيربط ابلاغ مينمايد.

 

ماده 38ـ به منظور اعمال نظارت موضوع ماده (35) قانون، مراجع و اشخاص ياد شده در مـاده (34) موظفند در صورت درخواست، حسب مورد اطلاعات و نقشه هاي فني لازم را در اختيار وزارت مسكن و شهرسازي قرار دهند و در صورتي كه وزارت ياد شده به تخلفي برخورد نمايد با ذكر دلايل و مستندات دستور اصلاح يا جلوگيري از ادامه كار را به مهندس مسئول نظارت و مرجع صدور پروانه ساختماني ذيربط ابلاغ نمايد و تا رفع تخلف، موضوع قابل پيگيري است. در اجراي اين وظيفه كليه مراجع ذيربط موظف به همكاري ميباشند.

 

ماده 39ـ سازمان مسكن و شهرسازي استان موظف است با همكاريهاي نظام مهندسي استان و شهرداري در محلهايي كه مشمول ماده (4) قانون نميباشند، در اجراي ماده (36) قانون نسبت به تهيه طرحهاي همسان (تيپ) در زمينه طراحي و اجراي ساختمان اقدام نمايد. شهرداريها نقشههاي مذكور را در اختيار متقاضيان قرار ميدهند و چنانچه متقاضي بر اساس نقشه همسان، درخواست پروانه ساختمان بنمايد، شهرداريها موظفند با رعايت ساير مقررات، پروانه ساختماني را صادر و رأساً اعمال نظارت نمايند.

 

ماده 40ـ به منظور مطالعات و تحقيقات موردنياز براي توسعه نظام مهندسي و اصلاح سيستم كنترل در مهندسي ساختمان و گسترش آن در سطح كشور، متناسب با امكانات و مقتضيات محلي و ارتقاء كيفي مهندسي ساختمان از طريق پيشنهاد اصلاح قوانين، تدوين آئيننامه هاي قانوني، اصلاح روشها و ساختار اداري و اجرايي و تدوين برنامه هاي آموزشي در سطوح مختلف، شورايي مركب از (7) عضو تحت عنوان "شوراي توسعه نظام مهندسي و كنترل ساختمان" در وزارت مسكن و شهرسازي تشكيل ميشود. اعضا و رئيس شوراي مذكور توسط وزير مسكن و شهرسازي انتخاب و دبيرخانه شوراي مذكور در وزارت مسكن و شهرسازي تشكيل ميشود.

 

 

 

 

تاریخ آپلود ۲۳/۶./۱۳۸۸

همه چیز درباره گرمایش از کف -

همه چیز درباره گرمایش از کف
مقدمه: گرمايش از كفسیستم حرارتی گرمایش از کف که انتقال حرارت به صورت تشعشعی (تابشی) سهم زیادی در فرآیند گرمایشی آن دارد، درمقایسه با سایر سیستمهای حرارتی نه تنها در صرفه جویی و بهینه سازی مصرف انرژی بلکه در مقوله رفاه و آسایش ساکنان ساختمان ها دارای نقاط قوت بسیاری می باشد. در سالهای اخیر، سیستم گرمایشی از کف در کشورهای اروپائی و آمریکا بسیار متداول شده است و دلیل این گسترش روزافزون بهینه بودن مصرف انرژی، توزیع یکسان گرما در تمامی سطح و فضا و دوری از مشکلات موجود در سایر روش ها ، به عنوان مثال سیاه شدن دیوارها، گرفتگی و پوسیدگی لوله ها و… می باشد. استفاده از روش گرمایش از کف جهت گرمایش محل سکونت از دیرباز به طرق مختلف انجام می گرفته است. بطوریکه رومی ها زیر کف را کانال کشی کرده و هوای گرم را از آن عبور می دادند و کره ای ها دود حاصل از سوخت را قبل از اینکه از دودکش عبور کند از زیر کف انتقال می دادند. در سال 1940 نیز فردی بنام سام لویت برای این منظور لوله های آب گرم را در زیر کف قرار داد. درکشور ایران نیز درمناطق کوهستانی و سردسیر ازجمله آذربایجان این روش مورد استفاده قرار می گرفته، که بیشترین مورد استفاده آن درحمام ها بود.

گرمايش از كف


به طور کلی سه نوع روش گرمایش از کف موجود است:
1. گرمایش با هوای گرم
2. گرمایش با جریان الکتریسیته
3. گرمایش با آب گرم
به دلیل اینکه هوا نمی تواند گرمای زیادی را درخود نگاه دارد روش هوای گرم در موارد مسکونی چندان به صرفه نیست و روش الکتریکی نیز فقط زمانی مقرون به صرفه است که قیمت انرژی الکتریکی کم باشد.درمقایسه با دو روش ذکر شده، سیستم گرمایش با آب گرم ( هیدرولیک) مقرون به صرفه تر و خوشایندتر می باشد. بدین خاطر سالهای متوالی در سراسر دنیا مورد استفاده قرار گرفته است.
روش گرمایش از کف به عنوان راحت ترین، سالم ترین وطبیعی ترین روش برای گرمایش شناخته شده است. همانطور که افراد دریک روز سرد زمستانی توسط تشعشع خورشید احساس گرما می نمایند دراین روش نیز گرما را بوسیله انتقال حرارت تشعشعی(تابشی) از کف دریافت می کنند و یقیناً احساس آسایش بیشتری خواهند نمود. در این سیستم گرمایشی معمولاً دمای آب گرم موجود در لوله های کف خواب بین 30 تا60 درجه سانتی گراد می باشد که درمقایسه با سایر روشهای موجود، که دمای آب بین 54 تا 71 درجه سانتی گراد است، 20 تا40 درصد در مصرف انرژی صرفه جوئی می شود. در ساختمان هائی که دارای سقف بلند می باشند استفاده از سیستم گرمایش از کف باعث کاهش مصرف انرژی و صرفه جوئی در مصرف سوخت می شود، به این خاطر که در سایر روشها (مانند رادیاتور و بخاری) هوای گرم در اثر کاهش چگالی سبک شده و به سمت سقف می رود و اولین جائی را که گرم می کند سقف می باشد (این موضوع به طور واضح درسمت چپ شکل زیر مشخص می باشد). به علت بالا بودن دمای هوا در کنار سقف میزان انتقال حرارت آن به سقف از هرجای دیگر بیشتر است و این عامل باعث اتلاف مقدار زیادی انرژی می شود.
در روش گرمایش از کف ابتدا قسمت پائین که مورد نیاز ساکنین است گرم می شود وهوا با دمای کمتری به سقف می رسد، که این یکی از مزایای اصلی این سیستم می باشد. یکی دیگر از مزایای استفاده از روش گرمایش از کف که امروزه بسیار مورد توجه واقع می شود آسایش و راحتی افراد می باشد، به طوریکه آسایش و راحتی فرد در محل سکونتش بدون اینکه از هر بابت دارای محدودیت باشد فراهم می شود. در نظر بگیرید که بدن شما در یک اتاق بگونه ای گرم شود که شما در هنگام استراحت هیچگونه هوای گرمی را استنشاق نکنید وتنفس شما بسیار ملایم صورت گیرد، این بهترین روش گرم کردن در یک آپارتمان و یا یک منطقه صنعتی است. همه اعضای بدن شما بخصوص پا که بیشترین فاصله را با قلب دارد همیشه گرم خواهد ماند و این برای انسان بسیار مطلوب خواهد بود.
همانگونه که قبلاً اشاره شد در گرمایش بوسیله رادیاتور یا بخاری دمای قسمت پائین اتاق سردتر از بالای آن می باشد که این حالت برای کودکان که دارای اندام کوچکی هستند ناخوشایند است، بطوریکه افزایش البسه آنها برای جلوگیری ازبیماری، آزادی کودکانه آنها را محدود می کند. سیستم گرمایش از کف برخلاف رادیاتور که هوای محل سکونت را به دلیل گرمای بیش ازحد خشک می کند،رطوبت را درحد متعادل نگه می دارد. همانطور که می دانید بیشتر افراد از کثیف شدن دیوارها و محیط زندگی در اثر استفاده ازمنابع گرمایی همچون بخاری و رادیاتور احساس نارضایتی می کنند. از آنجا که درسیستم گرمایش از کف جریان هوا به آرامی از پایین به بالا می باشد بنابراین دیوار ها پاکیزه می مانند. همین امر در مورد افرادی که دارای آلرژی (حساسیت) هستند بسیار مورد اهمیت است زیرا که محیط زندگی عاری ازهرگونه محرک خواهد شد. استفاده از این سیستم در مکانهایی همچون آشپزخانه و حمام که کف آنها معمولاً خیس و مرطوب است مناسب بوده و باعث خشک شدن کف می شود. مسئله مهم دیگر اینکه در این روش رطوبت زمین که دربعضی ازمنازل منجر به بروز بیماریهای مفصلی می شود ازبین رفته و باعث کاهش درد بیماران مبتلا به ناراحتی هایی از قبیل رماتیسم خواهد شد.
همچنین از رطوبت دیوارها و کپک زدن آن که شکل خوشایندی ندارد جلوگیری می شود و دیگر اینکه در این سیستم جایی برای رشد و تکثیر حشرات موزی وجود ندارد. یکی دیگر از فواید سیستم گرمایش از کف این است که دیگر فضای منزل یا محل کار توسط دستگاههای رادیاتور و بخاری اشغال نمی شود و به همین منظور آزادی بیشتری در تغییر دکوراسیون محل زندگی خواهید داشت. شاید به نظر آید که به هنگام نصب سیستم کف خواب دیگر نمی توانید پوشش مورد علاقه تان را برای کف انتخاب کنید! ولی این طور نیست. مطمئن باشید که شما می توانید برای پوشش کف منزل خود از هر نوع مصالحی ازجمله سنگ، سرامیک، کاشی پارکت چوب وفرش نیز استفاده کنید بدون اینکه تأثیری درگرمای مطلوب محیط شما بگذارد. یکی دیگر از مزایای استفاده از سیستم گرمایش از کف در روشهای ذوب برف می باشد بطوریکه از این روش برای ذوب یخ یا برف موجود در پیاده روها، لنگرگاههای بارگیری، جاده ها، ورودی ساختمانها و بیمارستانها، باند فرود هواپیما و زمینهای ورزشی از جمله زمین فوتبال وغیره که دسترسی آسان و سریع به محل الزامی است می توان استفاده کرد. بطوریکه این روش علاوه برکاهش هزینه های برف روبی و نمک پاشی، در حفظ ساختار موارد گفته شده بسیار موثر خواهد بود.
در حدود ۱۷۰۰ سال پیش در امپراتوری روم باستان سیستم گرمایش از کف بعنوان یک روش تامین حرارت مطلوب مورد استفاده واقع می گردید.
نمایی از اجرای سیستم گرمایش از کف

 گرمايش از كف

گرمايش از كف


فواید استفاده از سیستم گرمایش کفی
۱) آسایش و آرامش در بالاترین حد ممکن: درجه حرارت ثابت و دائمی درکلیه طول زمستان در نزدیکی کف ساختمان و در محلی که شما قرار دارید وجود خواهد داشت . این حالت بسیار دلپذیری است که محیط اطراف پا گرم بوده و هوای مورد تنفس گرمای زیادی نداشته باشد. پروفیل دمایی سیستم گرمایش کفی به پروفیل ایده آل بسیار نزدیک است، گرما به آرامی از کف به سمت سقف منتشر می شود، پای گرم و سر خنک، به سلامت کمک می کند.
۲) ثابت بودن حرارت: بعلت جرم بسیار پوشش کف ساختمان در صورت هر گونه قطع برق و یا عوامل دیگر که باعث توقف حرارت دهی مرکزی باشد ، مدت زمان سرد شدن آپارتمان بسیار طولانی تر از سایر روشها می باشد . در این سیستم ابتدا مدت زمانی طول می کشد تا کف زمین به درجه حرارت مطلوب برسد ، ولی پس از گرم شدن این حرارت به صورت باثبات تری در طول مدت زمستان مورد استفاده قرار خواهد گرفت .
۳) سبکی وزن ساختمان، افزایش ارتفاع اتاقها: بعلت استفاده از یکنوع لوله با سایز پائین و همچنین حذف عبور لوله های تاسیساتی از روی یکدیگر ( که عموما باعث بالا آمدن کف واحدها و پر کردن کف در زمان ساخت می شود ) ضخامت پوشش به مقدار زیادی کاهش می یابد. این امر ضمن کم کردن وزن ساختمان ( و در نتیجه استقامت بیشتر آن ) موجب افزایش ارتفاع سقف واحدها نیز می گردد.
۴) صرفه جویی در مصرف سوخت: بعلت تماس مستقیم افراد با منبع گرمایش درجه حرارت اتاق در درجات پائین تری تنظیم می گردد. این امر موجب صرفه جویی ۲۵ الی ۴۰ درصد در مصرف سوخت خواهد شد .
۵) آزادی عمل در دکوراسیون داخل منزل: بعلت قرار گرفتن این سیستم در داخل کف زمین اثاثیه را میتوان در هر گوشه از ساختمان قرار داد . این امر بخصوص در واحدهای کوچکتر و اتاق خوابهای بافضای محدود ، ملموس تر خواهد بود .
۶) هوای پاکیزه تر و خشک نشدن هوا: در سیستم رادیاتوری ، عموما هوای اتاق خشک می شود . در بسیاری از موارد با قرار دادن کتری آب به روی رادیاتور سعی در افزایش رطوبت اتاق می شود . این مشکل در سیستم گرمایش کفی نمودی نخواهد داشت .
۷) تمیزی دیوارها و اثاثیه منزل: بعلت سیکل گردش هوای داغ در زمان استفاده از رادیاتور عموما دیوارهای بالای رادیاتور بمرور زمان سیاه شده و دوده را بخود جذب می نماید . در سیستم گرمایش کفی ویرسبو این مشکل برطرف شده و دیوارها وسایر لوازم در طول زمان سیاه نخواهد شد .
۸) افزایش ارزش منزل: استفاده از سیستم گرمایش کفی ویرسبو موجب افزایش ارزش منازل می شود اگر چه نصب این سیستم از لحاظ هزینه تفاوت چندانی باسیستم حرارت بتوسط رادیاتورهای مرغوب ندارد ، ارزش افزوده آن برای ساختمان بسیار بیشتر خواهد بود .
۹) استفاده از منابع حرارتی مختلف: سیستم گرمایش کفی ویرسبو می تواند از منابع مختلفی برای تامین گرمایش استفاده کند . موتور خانه ، پکیچ و حتی حرارت خورشیدی می توانند در این سیستم مورد استفاده قرار گیرند .
۱۰) خشک تر باقی ماندن زمینهای مرطوب و یا خیس: در صورت نصب سیستم گرمایش کفی ویرسبو در محلهای مانند آشپزخانه ، سرویسهای بهداشتی و زیر زمین ، در صورت خیس شدن کف این محلها بعلت شستشو بسرعت خشک خواهد شد .

گرمايش از كف
● روشهای کنترل دما در سیستم گرمایش کفی:
ـ سیستم کنترل دمای بصورت دست
ـ سیستم کنترل دمای اتوماتیک بصورت مکانیک
ـ سیستم کنترل دمای اتوماتیک بصورت برقی
▪ سیستم کنترل دمای بصورت دست
در این سیستم با استفاده از شیرآلات قطع و وصل متصل شده به خروجی های هر کلکتور،در جعبه مربوطه، امکان کنترل منطقه های حرارتی به صورت دستی امکان پذیر می گردد.از مزایای این سیستم، اقتصادی بودن و ساده بودن سیستم کنترلی، میتوان اشاره نمود.
گرمايش از كف
▪ سیستم کنترل دمای اتوماتیک بصورت مکانیک
در این سیستم با استفاده از نصب شیرآلات گرمایش کفی در داخل دیوار هر فضایگرمایشی، از طریق تنظیم ترموستات حرارتی نصب شده بر روی شیر گرمایش کفی داخل دیوار، دمای محیط مریوطه به صورت مکانیکی و اتوماتیک کنترل می گردد.در این روش داخل جعبه شیر گرمایشی، شیر تخلیه هوا نیز پیش بینی شده است.
▪ سیستم کنترل دمای اتوماتیک بصورت برقی
در این سیستم شیرهای برقی که به حس گرهای الکتریکی در هرمحیط به طورجداگانه وصل شده اند، فرمان قطع و وصل هرمدار حرارتی را دریافت نموده و عملیات تنظیم خودکار هر محیط را انجام می دهند.امکان دیگری همانند، دبی سنج و یا دماسنج نصب شده بر روی هر خروجی وورودی کلکتور امکان کنترل های مختلف و متنوعی را برای کاربر ممکن می سازد.سیستم اتوماتیک برقی پایپکس کاملترین روش کنترلی دمائی فضای گرمایش کفی می باشد.
گرمايش از كف


انواع منبع تامین کننده حرارتی ممکن جهت سیستم گرمایشی از کف:
سیستمهای گرمایش از کف همانند سیستم رادیاتور قابلیت اتصال به انواع منابع تامین کننده حرارتی را دارا میباشند. ولی با توجه به راندمان بالای گرمایش کفی دمای مورد نیاز به بیشتر از ۵۰ درجه نمیرسد. از طرف دیگر دمای مورد نیاز سیستم آبرسانی حد اقل ۶۰ درجه می باشد. در نتیجه در ساختمانی که از گرمایش کفی استفاده می کند نیاز به دو مدار با درجه حرارت متفاوت ضروری است که به روشهای ذیل ممکن می باشد:
ـ استفاده از پکیج
ـ استفاده از موتورخانه با ۲ دیگ کوچک
ـ استفاده از موتورخانه با یک دیگ و مبدل حرارتی
ـ استفاده از موتورخانه با یک دیگ و الکترو والو با مدار بای پاس
مدل سازی اتلاف گرمای سیستم گرمایش کف با استفاده از یک مدل دو بعدی متصل به زمین:
گزارش حاضر، یک مدل شبیه سازی دو بعدی از اتلاف گرما و حرارت را توسط یک ورقه روی پایه، برای سیستم حرارتی کفی، معرفی می کند. وظیفه این سیستم مدل سازی تأثیر آرایش و شکل کف پی ساختمان در کارایی سیستم گرمایش است. این مدل می تواند برای طراحی خانه های دارای پتانسیل مناسب برای سیستم حرارتی کف با توجه به اتلاف گرما از طریق شکل و ترکیب کف و پی ساختمان، استفاده شود.
بررسی ها نشان می دهد که برای یافتن میزان دقیق اتلاف گرما به زمین، مدل متحرک سیستم کف مهم است اما مهمتر از آن، تأثیر بسزایی است که پی ساختمان در اتلاف انرژی ساختمان ها که توسط سیستم حرارت کفی گرم می شوند، دارد. نتیجه این مدل سازی می تواند در طراحی خانه هایی با سیستم حرارتی کفی لحاظ گردد.
گرمايش از كف
مدل شبیه سازی انرژی ساختمان
مدل سازی اتلاف گرمای سیستم گرمایش کف می تواند در یک مدل شبیه سازی شرایط حرارتی یک اتاق با گرمایش کف استفاده شود. بدین منظور مدل انتقال گرما را با خصوصیات مواد ثابت و پایدار مد نظر می گیرند. دیوارها، سقف، کف و پنجره ها با استفاده از یک متر حجمی کنترل محدود با یک طرح تهویه مجازی، مدل سازی می شوند. در این مدل، سیستم تهویه یک سیستم متعادل ساده است که دارای بازیافت گرما می باشد. اطلاعات آب و هوای ساعت به ساعت (اندازه گیری شده یا از یک طرح منبع سالانه) نیز به عنوان ورودی استفاده می شود.
بدین ترتیب، مدل در یک برنامه شبیه سازی با مدل هایی برای دیوارها،( شامل توضیح داخلی تشعشعات خورشیدی)، سقف، کف، تهویه، اتاق و اطلاعات آب و هوا با نام
پیش بینی دقیق جریان گرما و حرارت نشان دهندۀ این مطلب است که ساختمان های بزرگ می توانند به خوبی بعنوان مدل قرار داده شوند که این کار بر پایه ویژگی بعد آنها استوار می باشد. علاوه بر این بهتر است که شبیه سازی دینامیکی حرارت در لوله های گرمکن کف برای محاسبۀ دقیق اتلاف گرما به زمین، در صورتیکه هم میانگین دقیق و هم ماکزیمم جریان گرما نیاز باشد، استفاده گردد. معمولاً مقدار متوسط حرارت کف گرم شده نیاز است.
اما تخمین این مقدار دشوار می باشد زیرا این مقدار به لیست طویلی از فاکتورها وابسته است که شامل میزان مصرف انرژی خانه و مقاومت حرارتی بین سیستم گرمایی کف واتاق می باشد که حتی اشتباهات کوچک در این تخمین باعث ایجاد تفاوت های بزرگ در اتلاف گرمای پیش بینی شده به زمین می گردد. مدل استفاده شده در این مقاله می تواند برای مدل سازی تأثیر پی و ساختمان کف در مصرف انرژی و اتلاف گرما به زمین توسط اتصال مدل کف به یک اتاق سنجیده و استفاده شود. با استفاده از این مدل جامع، شبیه سازی دینامیکی اتاق و سیستم گرمایی کف قابل اجرا می باشد. در این مدل تأثیر عایق در ساختمان کف و پی در مصرف انرژی خانه مهم نشان داده شده است. اما اِشکال مدل این است که کند بوده و به تعداد داده های زیادی نیازمند است. در هر حال این مدل می تواند به عنوان گامی به طرف اجرای سیستم های گرمکن کف قلمداد گردد.

گرمايش از كف


تاریخچه سیستم گرمایش کفی
سیستم گرمایش کفی در جهان جدید نمی باشد و بصورت بسیار ابتدایی و ساده مورد استفاده قرار می گرفته است .در واقع برای اولین بار گرمایش کفی در حدود 60 سال بعد از میلاد یعنی روم باستان مورد استفاده قرار گرفته است.
رومیان با سوزاندن چوب و ایجاد گازهای متشعل و عبور دادن این گازها از کانالهای هوایی موجود در کف ساختمان اقدام به گرم کردن کف منازل خود می کردند . این روش مدتهای مدیدی مورد استفاده قرار گرفته است.
هم اکنون نیز همین سیستم گرمایشی مورد استفاده قرار می گیرد با این تفاوت که نحوه عمل مقداری تغییر کرده است و بجای گاز داغ از آب گرم و بجای کانالها از لوله های مخصوص استفاده می کنند.
امروزه با پیشرفت تکنولوژی هزینه نصب سیستم گرمایش کفی کاهش یافته است و با استفاده از لوله های PEX دیگر مشکلات مربوط به لوله های مسی وفلزی و پلی بوتیلن را نخواهیم داشت .
لوله های پلی بوتیلن (PB) مدتها در این روش مورد استفاده قرار می گرفت اما بدلیل وجود مشکلاتی مانند نشتی آب، کم کم جای خود را به لوله های جدید تر دادند .
امروزه لوله های پلیمری جدیدی بنام تجاری PEX که از جنس پلی اتیلن مشبک شده می باشند مورد استفاده قرار می گیرند. که مانند لوله های PB نصب آنها بسیار آسان خواهد بود اما بخاطر ساختار مشبک آن خواص بهتری از خود نشان می دهند و مشکلات لوله های پلی بوتلین را ندارند .
لوله های PEX برای اولین بار در سال 1971 توسط شرکت ویرسبوی سوئد تولید و به جهانیان عرضه شد . این لوله ها بعد از مدت کوتاهی توانستند جایگزین لوله های قبلی شوند. هم اکنون شرکت ویرسبو سوئد بزرگترین طراح و مجری سیستم گرمایش کفی در تمام جهان می باشد.
از سال 1990 تولید تولید این لوله در آمریکا آغاز شد و هم اکنون بیش از 50% از تمام سیستمهای گرمایش کفی بکار رفته در این کشور از لوله های PEX ویرسبو استفاده می کنند .
FHSim برای شبیه سازی گرمکن کف، بکار گرفته می شود. با استفاده از این برنامه، گرمکن کف، می تواند جزئیات به مصرف انرژی و اتلاف گرما به زمین را مشخص سازد. بعلت سیکل گردش هوای داغ در زمان استفاده از رادیاتور عموما دیوارهای بالای رادیاتور بمرور زمان سیاه شده و دوده را بخود جذب می نماید . در سیستم گرمایش کفی ویرسبو این مشکل برطرف شده و دیوارها وسایر لوازم در طول زمان سیاه نخواهد شد . PB نصب آنها بسیار آسان خواهد بود اما بخاطر ساختار مشبک آن خواص بهتری از خود نشان می دهند و مشکلات لوله های پلی بوتلین را ندارند . PEX دیگر مشکلات مربوط به لوله های مسی وفلزی و پلی بوتیلن را نخواهیم داشت .
لوله های پلی بوتیلن (PB) مدتها در این روش مورد استفاده قرار می گرفت اما بدلیل وجود مشکلاتی مانند نشتی آب، کم کم جای خود را به لوله های جدید تر دادن
د

منبع  http://www.airchange.ir

تاریخ  آپلود ۲۸/۰۴/۱۳۸۸

ليست قيمت هاي روز مصالح ساختماني-تیرآهن-نبشی-میلگردو...




ليست قيمت هاي روز مصالح ساختماني





ترمیم آرماتورهای کوتاه

 

یک روش بسیار جالب برای ترمیم آرماتورهای کوتاه:

منظور از آرماتورهای کوتاه آرماتورهایی هستند که در اثر اشتباه بریده شده و یا بعد از بتن ریزی مرحله اول متوجه کوتاهی طول آنها می شوند٬ در خیلی از موارد می توان با همپوشانی آرماتوری جدید این مسأله را مرتفع کرد٬ اما گاهی اوقات طول همپوشانی طبق آیین نامه بیشتر از طول آرماتور خارج از بتن می باشد و همچنین استفاده از جوش به دلیل اثرات منفی آن بر آرماتور مقبول نیست ٬ در عکسهای زیر آرماتور های یک ستون کوتاه (pedestal) به اشتباه بریده شده است و نیاز است تا ۱۵ سانتیمتر به طول آرماتور ها اضافه شود. عکسها تا حدودی گویا می باشند:

تصویر 1           تصویر 2           تصویر 3               تصویر 4          تصویر 5      تصویر 6        تصویر 7

 

نظارت وایمنی کارگاه  http://www.construction.blogfa.com/

ربات «چاپگر ساختمان» طی 24 ساعت بدون دخالت انسان200 متر مربع ساختمان بنا می‌کند

 

ربات «چاپگر ساختمان» طی 24 ساعت بدون دخالت انسان200 متر مربع ساختمان بنا می‌کند

 

سیستم رباتیک ابداعی دکتر « بهرخ خوشنویس »، استاد ایرانی دانشگاه کالیفرنیای جنوبی در بین 4300 طرح رباتیک ابتکاری که از سوی داوران جایزه ملی ابتکارات (National Invention Prize) ‌آمریکا مورد بررسی‌ قرار گرفته‌اند، به همراه 24 طرح دیگر به مرحله نهایی این رقابت فشرده علمی راه یافت.

 

دکتر « بهرخ خوشنویس » رباتی را طراحی کرده و ساخته است که می‌تواند در مدت ‌24 ساعت ساختمانی به مساحت ‌200 متر مربع را بدون دخالت هرگونه نیروی انسانی از پایه بنا کند و به زعم دانشمندان، صنعت ساختمان‌سازی جهان را در آستانه انقلابی نوین قرار داده است.

این اختراع استثنائی به همراه
سایر ابتکارات رباتیک راه یافته به مرحله نهایی این رقابت مهم علمی موسوم به Modern Marvels Invent Now ® Challenge، تا دهم اردیبهشت ماه جاری در موزه علوم و صنایع آمریکا در کالیفرنیا به نمایش گذاشته شده است. این نمایشگاه پیش از این در مرکز علوم کالیفرنیا (California Science Center) برپا شده بود.

هیأت داوران که
شامل مخترعان، کارشناسان تکنولوژیست و متخصصان رشته‌های مختلف داوری این مسابقه را برعهده دارند. برگزارکنندگان این رقابت نوآورانه در حوزه فن‌آوری، راه‌یافتگان به مرحله نهایی مسابقه را طراحان مبتکری خوانده‌اند که با پافشاری بر طرح‌های خاص خود هم‌چون گذشتگانی نظیر « بن فرانکلین » و « توماس ادیسون » به دنبال ایجاد تغییرات شگرف در شیوه زندگی مردم هستند.

خوشنویس خود از
این فناوری به عنوان بزرگترین دستاورد بشری در زمینه ساخت‌وساز پس از احداث دیوار بزرگ چین یاد می‌کند؛ البته شاید بهتر باشد، نظر گزارشگر نشریه آلمانی «اشپیگل» را بپذیریم که واژه «ساختن» تعبیر چندان مناسبی برای توصیف تکنیک ابداعی نیست، زیرا کاری که ماشین خوشنویس می‌کند، هیچ شباهتی با آنچه امروزه در محل کار ساختمان می‌گذرد، ندارد. ماشین ساخته شده، 550 سال پس از اختراع صنعت چاپ کتاب، آغاز عصر چاپ «خانه» را نوید می‌دهد.

دکتر خوشنویس اظهار
کرد که ‌هدف نهایی این تحقیقات، دستیابی به توان ساخت خانه‌ای به مساحت ‌200 متر مربع، طی مدت یک روز، بدون دخالت هرگونه نیروی انسانی است که امیدوار است طی یک سال آینده به این هدف دست یابد.

در همین خصوص « جیمز
مور » رییس مدرسه USC Viterbi School Daniel J. Epstein در سازمان مهندسی سیستم‌ها و صنایع آمریکا (Department of Industrial and Systems Engineering) از پرفسور خوشنویس به عنوان ادیسون این دپارتمان یاد کرد و گفت:

« پرفسور خوشنویس به جای
آنکه تنها با پرسه‌زدن به دور برخی نظریه‌ها و برهانها خود را راضی کند،‌ درک تکنولوژیکی پالایش یافته‌، صبر و حتی خطا و پایداری مافوق انسانی را با یکدیگر ترکیب می‌کند تا به تحولی پس از تحول دیگر نایل شود. »

وی در ادامه گفت: « اختراع پروفسور خوشنویس از نوع اختراعات ابتکاری
است و جذبه ذاتی دارد زیرا این ابتکار به همه مردم شانسی برای لذت بردن از تجربه‌های خیال‌انگیز می‌دهد. »

پروفسور خوشنویس
که در حال حاضر در خصوص این اختراع ابتکاری با موسسه Viterbi School's Information Sciences Institute همکاری دارد، با اشاره به اعلام آمادگی یکی از موسسات تحقیقات معماری کالیفرنیا در ساخت یک سازه خشتی با استفاده از این تکنیک به ایسنا گفت: نمونه آزمایشگاهی کوچک این ربات می‌تواند به تنهایی و بدون دخالت هرگونه عامل خارجی یک قطعه دیوار کاملا صاف با ابعاد ‌30×150 سانتیمتر و به ضخامت ‌30 سانتیمتر تولید کند و هیچ دلیلی وجود ندارد که نمونه بزرگتر این ربات نتواند سازه‌هایی با مقیاس خانه‌های موجود ایجاد کند.

نکته جالب توجه، اعطای جایزه 25 هزار دلاری به برنده این رقابت جالب
توجه رباتیک است. در جریان برگزاری این نمایشگاه بازدیدکنندگان این شانس را دارند تا به آثار برگزیده از دید خود رأی دهند.

نحوه
عملکرد ربات به این صورت است که ابتدا بتن مخصوص خود را که می‌تواند ترکیب مایعی از گچ، خشت، بتن معمولی،‌ پلاستیک یا حتی ذرات چوب با ترکیبی چسبنده باشد، به صورت خمیری مایع در می‌آورد؛ سپس براساس فرمان رایانه، این خمیر را از طریق دریچه نازل خود در نقاط تعیین شده قرار می‌دهد.

این لایه
بتنی به سرعت سخت می‌شود و بدین ترتیب ساختمان لایه به لایه بالا می‌آید. در این پروسه، ابتدا سطوح خارجی شکل می‌گیرد و سپس داخل آنها پر می‌شود. به بیان دیگر ابتدا محیط شکل هندسی چاپ شده و سپس بخش داخل آن با بتن انباشته می‌شود. محل‌های مربوط به کابل‌ها و کانال‌ها نیز خالی می‌ماند.

ربات ابداعی قادر است تمام اجسام سه بعدی را با هر شکل دلخواه از
جمله مکعب‌ها، جعبه‌ها، بطری‌ها، سیلندرها، حلقه‌ها یا دیسک‌ها ایجاد کند. البته ربات همان چیزی را می‌سازد که آرشیتکت قبلاً در برنامه رایانه‌یی ساختمان (CAD) طراحی کرده است.

این
فرآیند جدید تلاشی جاه‌طلبانه است تا فرآیندی هم‌چون ساخت یک خانه بسیار کوتاه‌تر و راحت‌تر شود. از جمله حامیان این جایزه مجله معتبر تایم (TIME)، اداره علامت تجاری و انحصاری آمریکا (United States Patent and Trademark Office)، جامعه آمریکایی مهندسان شهری، شرکت DeLorme Publishing، انجمن Intellectual Property Owners Association آمریکا و جامعه Licensing Executives Society هستند.